The Pros and Cons of Alternative Disinfection Technologies for Room Decontamination

Dick Zoutman, MD, FRCPC Emeritus Professor Medical Microbiology & Infectious Diseases Queen's University

Conflict Of Interest Disclosure

- An inventor of AsepticSure[®]
- Chief Medical Officer of Medizone International Inc.
- Shareholder of Medizone International Inc

Objectives

- At the end of this presentation I hope you:
 - Will be able to describe the two types of UV lamp technologies, their characteristics and efficacy
 - Will be able to describe the basis for the hydrogen peroxide vapor and mist technologies and their efficacy
 - Will be able to describe how effective ozone based methods are as a space disinfection technology
 - Understand the synergy of combining ozone and hydrogen peroxide as a novel high level disinfection technology for health care spaces and other applications
 - Will know what to look for in *in vitro, in vivo* and clinical studies of the new technologies for room decontamination and disinfection

Agenda

- The characteristics of an ideal room disinfection system
- Quality of Evidence
- Ultraviolet light
- Hydrogen peroxide
- Ozone
- Ozone and Hydrogen Peroxide Synergy

What I Cannot Cover Today

- Formaldehyde fogging
- Aerosolization of surface cleaning agents
- Chlorine dioxide
- Detailed cost estimates of all technologies
- Most of the data presented is about bacteria and bacterial spores
 - With apologies to the viruses and fungi in the room!

The Problem

- Too many healthcare infections
- Needless suffering and mortality
- Despite innovations and best efforts
- Environment a major source and reservoir
- We need to find a transformational technology!
- Just cleaning where the "dots are" is not good enough!

Characteristics of the Ideal Room Disinfection System

- ✓ Highest possible kill of all relevant organisms especially *C. difficile* spores
- ✓ Fast
- ✓ Simple to perform
- ✓ Cost effective
- ✓ Can be safely deployed
- ✓ No environmental residues
- ✓ Reduces incidence of healthcare infections
- ✓ High quality supportive scientific evidence

Quality of Evidence Concerning H2O2, UV, O3

- Can be very mixed so read it critically
- Peer reviewed literature best
- *in vitro* studies
 - Using test chambers etc
 - Bacteria or other organisms on various materials
 - Steel discs/coupons
 - Fabric, carpet, plastics, various building finishes
 - Good controls with many replicates
 - Quantitative Carrier Tests (QCT) Protocol by Springthorpe and Sattar et al
 - Use of a soil load
 - Each organism brings unique challenges

in vivo Testing

- In hospital rooms, laboratories, various field locations
 - Random assignment of rooms/spaces
 - No over lap of methods, "wash out times"
 - Detailed surface culture protocol with large number of samples
 - Highly standardized, with different methods
 - Supplemented with microbe loaded coupons in standard locations in the room
 - Always use spores of spore forming pathogens
 - eg C. difficile, Bacillus spp, Geobacillus spp. etc.

Interpreting Results

- Want to see expression of data as log10 kill (or log10 survivor)
 - Kill =starting inoculum-survivors
 - Expressed as log10 kill
 - Use geometric means for large number of samples
 - Need dozens of replicates under any one set of conditions especially for *in vitro* testing
- Surface swabs
 - Typically expressed as cfu/cm2
 - Typically see 10's to 100's cfu/cm2
 - Count specific pathogens
 - Or count all heterotrophic bacteria on the surface

Clinical Studies

- Before and after studies citing reductions in infections
 - Rates of HAI vary significantly over time
 - Be cautious in the interpretation of these results
- Prefer randomized and multicenter design ideally
 - Difficult to do and costly
 - Combined with surface cultures and loaded coupons and clinical outcomes to make a comprehensive evaluation

A Bit of Physics About UV Light

- Ultraviolet germicidal irradiation (UVGI)
- Wavelength shorter than that of visible light
 - UVA 400 nm to 315 nm
 - UVB 315 nm to 280 nm
 - UVC 280 nm to 200 nm
- The entire UV spectrum can kill or inactivate many different microorganisms
- UVC energy provides the most germicidal
- 265 nm optimum wavelength

Susceptibility to UV Light

- Susceptibility to UV irradiation varies by species
- Also upon other conditions:
 - Eg air, water, temperature, flow rates, etc
- Microbial susceptibility is very variable
- Design of UV light systems not that standardized
- No consensus guidelines for design

Susceptibility of Organisms to UVC

More Susceptible	Organism Group	Member Group
Vegetative	Vegetative	Staphylococcus aureus
Bacteria	Bacteria	Streptococcus progenies
	1	Escherichia coli
		Pseudomonas aeruginosa
		Serratia marcescens
Mycobacteria	Mycobacteria	Mycobacterium tuberculosis
		Mycobacterium bovis
		Mycobacterium leprae
Bacterial	Bacterial	Bacillus anthracis
Spores	Spores	Bacillus cereus
		Bacillus subtilis
Fungal	Fungal	Aspergillus versicolor
Spores	Spores	Penicillium chrysogenum
Less Susceptible		Stachybotrys chartarum

From Martin SB et al . ASHRE Journal. August 2008

Mercury Vapor Lamps

- In mercury vapor lamps, the mercury vapor is excited to create UV-C
- Create UV at 253.7 nm.
- This is close to the average peak DNA absorbed at 260-265 nm.
- Mercury lamps produce continuous UV light

Xenon Vapor Lamps

- Pulsing a xenon UV lamp PX-UV
- Results in a flash of light with a broad spectrum from 200 nm to 320 nm
- Millisecond pulses
- More UV-C wavelengths are produced
- High intensity of the fast pulses may give PX-UV better disinfection efficacy?

Tru-D Unit by Lumalier

From ECRI Health Devices May 2011

Mercury UV System Tru-D

- An automated mobile UV-C unit
- Tru-D; by Lumalier
- Shown to produce a 3 log10 kill of vegetative bacteria
 - MRSA, VRE, and A. baumannii
- 2.4-log10 kill of *C. difficile* seeded onto Formica surfaces in experimentally contaminated patient room

Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. *Infect Control Hosp Epidemiol* 2010;31:1025–1029.

Tru-D

- Tru-D, Lumalier studied in reducing environmental contamination with vegetative bacteria
- Measured using aerobic colony counts and *C.* difficile inoculated onto stainless steel carrier disks
 - Boyce JM et al. Infect Control Hosp Epidemiol 2011;32:737–742

Tru-D

- Room decontamination with the Tru-D UV system
- Reductions in aerobic bacteria on 5 high-touch surfaces.
- Mean *C. difficile* log10 reductions ranged from 1.8 to 2.9 when cycle times of 34.2–100.1 minutes were used.
- Surfaces in direct line of sight were significantly more likely to yield negative culture results after UV decontamination than before decontamination
 - Boyce JM et al. Infect Control Hosp Epidemiol 2011;32:737–742

Tru-D

- On inoculated surfaces
- Reflected dose of 22,000 μ Ws/cm2 for <u>45</u> minutes
- Kill of *C. difficile* spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2
- Kill of VRE by >3-4 log10 CFU/cm2
- Same level of kill of MRSA and VRE was achieved in $\underline{20}$ minutes at a reflected dose of 12,000 $\mu Ws/cm2$,
- But killing of *C. difficile* spores was reduced significantly.
 - Nerandzic MM. *BMC Infect Dis* 2010;10:197.

Tru-D Log10 Bacterial Kill

From Nerandzic MM et al. BMC Infect Dis 2010;10:197

Tru-D Surface Swabs

- High touch surfaces of a bathroom
 - $60,000 \text{ cm}^2$
 - C. difficile spores
 - Before: 600 spores
 - After: 24 spores
 - MRSA bacteria
 - Before: 1,200
 - After: 240
 - VRE bacteria
 - Before: 180
 - After: 0

From Nerandzic MM et al. BMC Infect Dis 2010;10:197

Xenex

Pulsed xenon UV light

From: www.xenex.com

XENEX in vitro Lab Study

Organism	Control (cfu)	Log10 Kill		
		480 sec (8 min)	720 sec (12 min)	
MRSA	1.23 x10 ⁵	5.01	n/a	
VRE	2.75 x 10 ⁴	4.44	n/a	
C. difficile	3.33 x 10 ⁵	4.52	5.52	

- *C. difficile* was 1 meter from lamp, MRSA and VRE 2 meters from lamp.
- *C. difficile* 9 samples, MRSA & VRE 4 samples.
- "The experiment was conducted at an independent microbial testing laboratory"
- Modified from: Stibich M. Abstract presented at SHEA/Fifth Decennial Meeting 2010

Xenex Study at MD Anderson

- January to March 2010 at MD Anderson Cancer Center, Houston Tx
- 12 rooms extensively surface cultured at discharge for VRE isolation
- Isolation clean with germicide x 30 mins.
- 3 x 4 min exposures to Xenex lamp
- Cultures taken before cleaning, after cleaning and using the Xenex lamp

Stibich et al. Infect Control Hosp Epidemiol 2011;32(3)

XENEX

TABLE 2. Impact of Standard Cleaning and Pulsed-Xenon Ultraviolet (PX-UV) Disinfection on Room Bacterial Heterotrophic Plate Count (HPC)

Room status	No. of samples	HPC mean, CFU/cm ²	z	Р
Comparison 1			2.638	.0083
Before cleaning	73	33.0		
After standard terminal cleaning	91	27.4		
Comparison 2			6.430	<.0001
Before cleaning	73	33.0		
After PX-UV treatment	75	1.2		
Comparison 3			4.309	<.0001
After standard terminal cleaning	91	27.4		
After PX-UV treatment	75	1.2		

Stibich et al. Infect Control Hosp Epidemiol 2011;32(3)

Xenex Cooley Dickinson Hospital Study

Zero Deaths/Colectomy with Xenex

140 bed acute hospital, Northampton MA

- January-September 2011 Xenex used
- Uncontrolled observational study
 - 2x7 min in room
 - 1x7 min in bathroom
- Pre-cleaned with chlorine bleach (SOP throughout)
- **CDI** Rates •
 - 2009: not stated
 - 2010: 0.95/1000 PtDay
 - 2008-2010 Q1-3: 0.98/1000 PtDay
 - 2011 (Q1-3): 0.32/1000 PtDay

Levin J et al. IDSA 2011 Abstract

UV Light Summary

Property	UV-C Light	Xenon Pulse Light
Source	Mercury bulb	Xenon bulb
Exposure time	20-100 min	8-12 mins over 2-3 doses
Vegetative bacterial kill	3-4 log	4-5 log
C. difficile spore kill	2-3 log	4-5 log (limited data)
Risks	UV exposure	UV exposure
Toxicities/By Products	Mercury vapor	None
Controlled Clinical Trials	Yes	None yet
Costs	\$124,500 capital \$1,600 for lamps (9000 h)	?? Lamps x 3-4 months
Other	Line of sight effect	Scant data, line of sight effect

H2O2 Technologies

- Bioquell
 - 30% H2O2 solution
 - H2O2 vapor
- Glosair (ASP)
 - 5-6% H2O2 solution
 - ASP (J&J) acquired Sterinis in 2009
 - H2O2 mist/aerosol
- VHP (Steris)
 - 35% H2O2 solution
 - H2O2 vapor

Steris VHP 1000 ED System

From: www.steris.com

BioQuell Q-10

www.bioquell.com

Glosair (ASP)

Glosair 600

Glosair 400

www.aspjj.com

VHP (Steris) Against Aerobic Spores

Pottage T. Appl. Environ. Microbiol. 2012, 78(12):4169.

Sealing Ducts in a Room

Jim Doyle in <u>www.stltoday.com/business/article</u> published August 15, 2010

Bioquell Efficacy for CDI

- HPV decontamination of 5 high-incidence CDI wards followed by hospital-wide decontamination of rooms vacated by patients with *C. difficile* infection (CDI)
- 25.6% of cultures from surfaces before HPV decontamination yielded *C. difficile*
- compared with 0 cultures of samples obtained after HPV decontamination (P <.001)

Boyce et al. Infect Control Hosp Epidemiol 2008; 29:723–729

Bioquell and CDI Cont'd

- During 9 month intervention period
- On the 5 high incidence wards rates of CDI dropped from 2.28 vs 1.28 cases per 1,000 patient-days (P<.047)
- Hospital wide incidence fell from 1.89 vs 0.88 cases per 1,000 patient-days (P <.047) during the high incidence months pre and post intervention.

Boyce et al. Infect Control Hosp Epidemiol 2008; 29:723–729

Bioquell and MRSA

- 74% of 359 swabs taken before cleaning yielded MRSA
- After cleaning, all areas remained contaminated, with 66% of 124 swabs yielding MRSA.
- After treatment of 6 rooms with HPV (Bioquell) only 1 of 85 (1.2%) swabs showed MRSA
 - note smaller sample size after exposure however
- 5 hour cycle time
- 500 ppm H2O2 (high)
 - French GL et al. Journal of Hospital Infection (2004) 57, 31–37

Sterinis Trial (becomes Glosair)

- Teaching hospital in Zonguldak, Turkey
- Steel discs inoculated and placed in many locations in patient rooms 53m3
- MRSA and A. baumannii
- Applied Sterinis HP Mist
- 2.5 hr cycles
 - Piskin N et al. Am J Infect
 Control. 2011
 Nov;39(9):757-62

Table 4. Comparison of the activity of the DMHP systemaccording to presence or absence of a barrier

	Reduction in initial contamination, Mean (±SD), log10 cfu		
	In absence of a barrier	In presence of a barrier	P value
Pure MRSA suspension carrying disks	4.70 ± 0.0	3.52 ± 1.82	.059
Pure Acinetobacter suspension carrying disks	4.67 ± 0.0	3.79 ± 1.35	.059
Serum containing MRSA suspension carrying disks	4.45 ± 0.63	1.49 ± 1.86	.003
Serum containing Acinetobacter suspension carrying disks	4.44 ± 0.0	2.92 ± 1.75	.01

H2O2 (Sterinis) vs Bleach

In vitro

TABLE 1. Comparison of the In Vitro Activity of Sodium Hypochlorite and Hydrogen Peroxide Against *Clostridium difficile* • Spores, According to the Material Used as a Spore Carrier

Disinfection	Reduction in initial contamination, mean $(\pm SD)$, \log_{10} cfu			
method	Vinyl polychloride	Laminate		
0.5% Sodium hypo- chlorite solution	$4.18~\pm~0.33$	4.47 ± 0.32		
Hydrogen peroxide– silver cation dry- mist	4.19 ± 0.86	4.17 ± 0.74		

In vivo

- *C. difficile* terminal clean rooms
- 0.5% bleach x 10 min x 16 rooms
 - 24% to 12% room
 contamination reduction (50%)
- Sterinis x 1.5-2 hr x 15 rooms
 - 19% to 2% room contamination reduction (91%)

Barbut et al. Infect Control Hosp Epidemiol 2009; 30:507-514 (Paris)

Tru-D vs Bioquell "Head to Head"

- 500 bed hospital
 - 15 patient rooms at random from 8 wards
- 5 high touch surfaces cultured for ACC
- Steel discs loaded with 10⁶ C. difficile spores placed in 5 areas close to high touch surfaces
- Bl's with 10⁴ and 10⁶ G. stearothermophilus

- Results
- HPV (Bioquell)
 - 93% ACC negative
 - 6 log10 *C. difficile* kill
 - 99-100% Bl's killed
 - 2.5-3 hr cycles
- UV-C (TRU-D)
 - 52% ACC negative
 - <2 log10 C. difficile kill</p>
 - 0-22% % Bl's killed
 - 0.6-1.7 hr cycles

Havell et al. Infect Control Hosp Epidemiol May 2012;33(5):507-512

Hardy K et al. J Hosp Infect 2007;66:360-368

Comparison of H2O2 Systems

Parameter	Glosair (ASP)	VHP (Steris)	BioQuell
H2O2 %	5-6%	35%	35%
Dispersion	Dry Mist/Aerosol	Vapor	Vapor
Final Conc H2O2	50-80 ppm	~500 ppm	~500 ppm
Cycle Time	~2-3 hr	2-8 hrs	≥2 hr, up to 5 hr
C. difficile log10 kill	2-3 log	*NPD for <i>C. difficile</i> . 5-6 log for Bacillus	<i>6 log for C. difficile</i> . 6 log for Bacillus
Controlled Clinical Trials	Some small	?	Yes
Cost	\$65,000? \$50 per room	?	\$44,000 capital Cost per room?

*NPD= No Published Data

Ozone Actions

- The first ozone disinfection experiment was conducted in France in 1886
- de Meritens demonstrated that diluted ozonized air could sterilize polluted water
- Ozone gas (O3) with a molecular weight of 48
- Highly reactive with a large excess of energy (~143 KJ/mol) and a high level of oxidizing power
- Marked tropism for extracting electrons from other molecules and simultaneously releasing one of its own oxygen atoms in the process.

Pure O3 as Antibacterial

		Log 10 reduction in cfu's		
	ATCC #	Wet sample	Dry sample	
Gram-positive bacteria				
Bacillus cereus	11778	> 3.1	> 3.1	
Bacillus spizizenii	6633	> 3.2	> 3.2	
Clostridium difficile	43593	> 4.0	> 4.0	
MRSA	Clinical isolates	> 3.0	> 3.0	
Methicillin-sensitive	Clinical isolates	> 2.5	> 2.5	
Staphylococcus aureus				
Propionibacterium acnes	11827	≥ 4	≥ 4	
Streptococcus pyogenes	12384	≥ 4	≥ 4	
Gram-negative bacteria				
Adinetobacter baumannii	19606	≥ 4	≥ 4	
Enterococcus faecalis	51299	> 3	> 3	
Escherichia coli	25922	> 3.1	> 3.1	
Haemophilus influenzae	19418	≥ 4	≥ 4	
Klebsiella pneumoniae	10031	≥ 4	≥ 4	
Legionella pneumophila	33152	≥ 4	≥ 4	
Pseudomonas aeruginosa	27853	≥ 4	≥ 4	
Acid-fast bacteria				
Mycobacterium smegmatis	14468	> 2.7	> 2.7	

Sharma & Hudson. Am J Infect Control 2008;36:559-63. Viroforce

Ozone & Hydrogen Peroxide in Biological Systems

- Antibodies have been shown to have catalytic activity that produces BOTH H₂O₂ AND O₃
 - BUT the amount produced of each is so low that neither could kill any microorganism
- Trioxidane (H₂O₃) has been detected as the extremely reactive intermediary molecule of this reaction
- Trioxidane is lethal to organisms in minute amounts!

Nyffeler, Wentworth & Lerner et al. Angewandte Chemie 2004, from Scripps Research Institute and Oxford University

What Can be Learned From Mother Nature!

- Medizone experiments that led to synergy
- Goals:
 - To study the antimicrobial effects of ozone gas and of hydrogen peroxide vapour
 - Against common healthcare and food borne pathogens
 - And to document the synergy of ozone AND
 hydrogen peroxide as rapid means to achieve a high level of disinfection in full sized rooms

Hydrogen Peroxide OR Ozone

Hydrogen Peroxide

- Used alone at 1-3%
- Resulted in < 1 log₁₀
 bacterial kill with up to
 60 minute exposures
- Certainly not sporocidal

Ozone

- Used alone at 30-200
 PPM
- Resulted in < 1 log₁₀
 bacterial kill with up to
 90 minutes exposures
- At 500-800 PPM for 90 mins see kill of 6 log₁₀

The Science of Synergy

Our Microbiology Techniques

1 cm stainless steel disks as the bacteria & spore carriers

The quantitative carrier test (QCT-2) standard used or modified

In vitro Testing System

- Polycarbonate chamber
- Fully instrumented to measure conditions
- Computer controlled and recorded results
- Used MRSA as test organism initially to define optimal conditions

In vivo Testing System

Frankenstein and Woody

The Results

Organism	Ozone (PPM)	H2O2 (%)	Exposure (min)	Microbial Kill (Log ₁₀)
MRSA	80	1	15	6.3
VRE	80	1	15	6.2
E. coli	80	1	15	6.5
S. typhimurium	80	1	15	6.1
P. aeruginosa	80	1	15	6.0
L. monocytogenes	80	1	15	6.3
C. difficile spores	80	1	15-30	6.1
B. subtilis spores	80	1	30	6.1
Mycobacterium terrae	80	1	30	6.2

Testing Materials

- AsepticSure system also effective on:
 - Stainless steel
 - Plastic from toilet seats
 - Laminate
 - Carpeting
 - Cotton or synthetic cloth
 - With and without organic soil load

Summary of AsepticSure

- First ever use of ozone and hydrogen peroxide for high level disinfection of clinical spaces and surfaces
- Capitalizes upon HUGE synergy between ozone and hydrogen peroxide producing trioxidane
- Very fast
- Broad spectrum
- Consistent **high level** disinfection (6 log₁₀=sterilization)
- **Penetrating** gas goes everywhere
- Low doses of ozone and hydrogen peroxide reduces costs, risks and damage to infrastructure
- Technology proven to be very **robust** and **reliable**
- Capital Cost~ \$95,000 + ~\$10-20 per room

Am J Inf Control 2011;39:873-9

Effectiveness of a novel ozone-based system for the rapid high-level disinfection of health care spaces and surfaces

Dick Zoutman, MD, FRCPC,^a Michael Shannon, MD, MSc,^{b,c} and Arkady Mandel, MD, PhD, DSc^c Kingston and Ottawa, Ontario, Canada

Background: Vapor-based fumigant systems for disinfection of health care surfaces and spaces is an evolving technology. A new system (AsepticSure) uses an ozone-based process to create a highly reactive oxidative vapor with broad and high-level antimicrobial properties.

Methods: Ozone gas at 50-500 ppm was combined with 3% hydrogen peroxide vapor in a test chamber and upscaled in rooms measuring 82 m³ and 90 m³ in area. Test organisms included methicillin-resistant *Staphylococcus aureus*, vancomycin-resistant enterococcus, *Escherichia coli*, *Pseudomonas aeruginosa*, *Clostridium difficile*, and *Bacillus subtilis* spores dried onto steel discs or cotton gauze pads.

Results: The combination of 80-ppm ozone with 1% hydrogen peroxide vapor achieved a very high level of disinfection, with $a \ge 6 \log_{10}$ reduction in the bacteria and spores tested on steel discs and MRSA tested on cotton gauze during a 30- to 90-minute exposure. The entire system was scalable such that it achieved the same high level of disinfection in both the 81-m³ and 90-m³ rooms in 60-90 minutes.

Conclusion: The ozone hydrogen peroxide vapor system provides a very high level of disinfection of steel and gauze surfaces against health care-associated bacterial pathogens. The system is an advanced oxidative process providing a rapid and effective means of disinfecting health care surfaces and spaces.

Key Words: Ozonation; hydrogen peroxide; fumigation.

Copyright © 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved. (Am J Infect Control 2011;39:873-9.)

AsepticSure

Bed Bugs!

AsepticSure and Bed Bugs

- Collaboration with Department of Entomology, Purdue University
- 100% kill of <u>all</u> stages of beg bugs including the very hard to kill eggs
- Higher concentration of ozone & H2O2 required (180 ppm and 3%)
- And longer exposure time of up to 24 hours.

Characteristics of the Ideal Room Disinfection System

- ✓ Highest possible kill of all relevant organisms especially *C. difficile* spores
- ✓ Fast
- ✓ Simple to perform
- ✓ Cost effective
- ✓ Can be safely deployed
- ✓ No environmental residues
- ✓ Reduces incidence of healthcare infections
- ✓ High quality supportive scientific evidence

The Final Result

